Mathematics Improvement Network

Teaching for Robust Understanding What makes a mathematically powerful classroom?

© 2017 University of California, Berkeley May be reproduced for non-commercial purposes under the Creative Commons BY-NC-SA license detailed at https://creativecommons.org/licenses/by-nc-sa/4.0/ - all other rights reserved

Today's Agenda

- 1. What really matters in classrooms?
- 2. Some tools for supporting powerful classroom instruction:
 - Formative Assessment lessons
 - Planning and Reflection
 - Classroom Observation Rubric
- 3. Q&A, on anything you want to talk about

1. What really matters in classrooms?

Establishing a focus

- If you had 5 things to focus on in order to improve mathematics teaching, what would they be?
- How would you know they're the right things?

1. A lesson on finding angles

1. A lesson on finding angles

Think, Pair, Share

- What did you see in the video?
- What was the experience like from the point of view of the students?

2. The Border Tiles Lesson

Here's a 10 x 10 grid.

Without counting them all one by one, how can you figure out the number of red border tiles?

What about other sizes?

2. The Border Tiles Lesson

Think, Pair, Share

- What did you see in the video?
- What was the experience like from the point of view of the students?

3. Fractions, decimals percents

Take turns to:

- 1. Fill in the missing decimals and percents.
- 2. Place the cards in order of size.
- 3. Check that you agree.

3. Fractions, decimals percents

The gray cards are the ones that students had to create for themselves.

3. Fractions, decimals, percents

Think, Pair, Share

- What did you see in the video?
- What was the experience like from the point of view of the students?

These were the headings

The Mathematics	 Is it important, coherent, connected? Opportunities for thinking and problem solving?
Cognitive Demand	 Do students have opportunities for sense making? Do they engage in productive struggle?
Access and Equity	 Who participates in what ways? Do <i>all</i> students engage in sense-making?
Agency, Ownership	 Do students have the opportunity to do and talk math? Do they come to see themselves as math people?
Formative Assessment	 Does classroom discussion reveal what students understand, so that instruction may be adapted to help students learn?

5 Dimensions of Mathematically Powerful Classrooms

The Mathematics

Cognitive Demand

Access to Mathematical Content

Agency, Ownership, and Identity

Our claim

Research suggests that:

- Classrooms at all grade levels that do well along these five dimensions will produce students who are powerful mathematical thinkers.
- Instructional materials, professional development, and classroom observations will be most powerful if they are aligned with these five dimensions.

2. Tools for supporting powerful classroom instruction

a. Formative Assessment lessons

- **b.** Planning and Reflection
- c. Ways to observe classrooms

Tool (a) Formative Assessment Lessons

http://map.mathshell.org

100 Classroom Challenges:

- 20 at each grade 6-8
- 40 for Career and College readiness at High School.
- 70% concept focused
- 30% problem solving

Each lesson attempts to integrate formative assessment into everyday teaching.

Diagnostic task before the lesson

Every morning Jane walks along a straight road to a bus stop 160 meters from her home, where she catches a bus to college.

The graph shows her journey on one particular day.

Describe what may have happened.

Is the graph realistic? Why?

Common Issue	Possible questions and prompts
Student interprets the graph as a picture E.g. as the graph goes up and down, Tom's path goes up and down.	• If a person walked at a steady speed up and down a hill, <i>directly away from</i> <i>home</i> , what would the graph look like?
Student interprets graph as speed-time E.g. The student has interpreted a positive slope as speeding up and a negative slope as slowing down.	 How can you tell if Tom is traveling away from or towards home?
Student fails to mention distance or time E.g. The student has not worked out the speed of some/all sections of the journey.	• Can you provide more information about how far Tom has traveled during different sections of his journey?
Student fails to calculate and represent speed	Can you provide information about Tom's speed for all sections of his journey?
Student adds little explanation as to why the graph is or is not realistic	 Is Tom's fastest speed realistic? Is Tom's slowest speed realistic? Why?/Why not?

Lesson beginning: Which story best fits?

- A. Tom took his dog for a walk to the park. He set off slowly and then increased his pace. At the park Tom turned around and walked slowly back home.
- B. Tom rode his bike east from his home up a steep hill.
 After a while the slope eased off. At the top he raced down the other side.

Students are given the chance to annotate and explain...

A graph may end up looking like this:

Matching graphs and stories

Distance from Pointered Poi	Distance from A	1 Tom ran from his home to the bus stop and waited. He realized that he had missed the bus so he walked home.	² Opposite Tom's home is a hill. Tom climbed slowly up the hill, walked across the top, and then ran quickly down the other side.
Distance from Di	Distance from Dis	³ Tom skateboarded from his house, gradually building up speed. He slowed down to avoid some rough ground, but then speeded up again.	⁴ Tom walked slowly along the road, stopped to look at his watch, realized he was late, and then started running.
Distance from Element Internet	Distance from Internet Interne	⁵ Tom left his home for a run, but he was unfit and gradually came to a stop!	⁶ Tom walked to the store at the end of his street, bought a newspaper, and then ran all the way back.
Distance from Di	Home Listance from Lime	⁷ Tom went out for a walk with some friends. He suddenly realized he had left his wallet behind. He ran home to get it and then had to run to catch up with the others.	⁸ This graph is just plain wrong. How can Tom be in two places at once?
Distance from Home	Distance from Line	⁹ After the party, Tom walked slowly all the way home.	¹⁰ Make up your own story!

Whole-class discussion: Interpreting tables (15 minutes)

Bring the class together and give each student a mini-whiteboard, a pen, and an eraser. Display Slide 5 of the projector resource:

Making Up Data for a Graph

On your whiteboard, create a table that shows possible times and distances for Tom's journey.

Tables are added to the card sort...

Distance

Distance

Distance

And the class compares solutions together

5 Tom left his home for a run, but he was unfit and gradually came to a stop!

В.		
Time	Distance	
0	0	
1	10	
2	20	2
3	40	
4	60	1
5	120	

7.

Tom went out for a walk with some friends when he suddenly realised he had left his wallet behind. He ran home to get it and then had to run to catch up with the others.

Time	Distance
0	0
1	30
2	60
3	0
4	60
5	120

9. After the party, Tom walked slowly all the way home.

Time	Distance
0	120
1	96
2	72
1	48
4	24
	0

Tom walked to the store at the end of his street, bought a newspaper, then ran all the way back.

6.

Time	Distance
0	0
1	40
2	40
3	40
4	20
5	0

8. This graph is just plain wrong. How can Tom be in two places at once?

End of lesson task

Sylvia bikes along a straight road from her friend's house home, a distance of 7 miles. The graph shows her journey. Describe what may have happened. Include details like how fast she bikes.

The Mathematics

How rich – connected, conceptual – is the mathematical content?

The lesson focuses on developing deep understandings of concepts like slope, and its use to describe real world phenomena; it provides opportunities to make connections across different representations (graphs, tables, stories).

Cognitive Demand

To what extent are students supported in grappling with and making sense of mathematical concepts?

The card sort and poster activities provide plenty of room for sense making – *if* the students are gently supported when they need it. (Remember the list of support questions) To what extent does the teacher support access to the content of the lesson for all students?

The classroom structures – which include whole group conversations, small group work, and student poster presentations – provide *opportunities* for teachers to support every student in engaging meaningfully with the mathematics. But . . . this takes hard work, even with the opportunities. To what extent are students the source of ideas and discussion of them? How are student contributions framed?

The classroom structures – which include whole group conversations, small group work, and student poster presentations – provide *opportunities* for teachers to support every student in building powerful mathematical identities. But . . . this takes hard work, even with the opportunities.

Formative Assessment

To what extent is students' mathematical thinking surfaced; to what extent does instruction build on student ideas when potentially valuable or address misunderstandings when they arise?

They're known as Formative Assessment Lessons for a reason...

Is this type of lesson effective?

The National Center for Research on Evaluation, Standards and Student Testing (CRESST)

assessed the effectiveness of the Math Design Collaborative's (MDC) use of Classoom Challenges in 9th Grade Kentucky classrooms.

What did they find?

Implementation and Effects of LDC and MDC in Kentucky Districts

Joan Herman, Scott Epstein, Seth Leon, Deborah La Torre Matrundola, Sarah Reber, and Kilchan Choi

Policy Brief No. 13

Is this type of lesson effective?

- "For MDC, participating teachers were expected to implement between four and six Challenges, meaning that students were engaged only 8-12 days of the school year
- Nonetheless, the studies found statistically significant learning effects... the approximate equivalent of 4.6 months for MDC. Given their contexts of early implementation and limited dosage, these small effects are noteworthy."

Tool (b) Planning and Reflection

- The TRU Math
 Conversation Guide.
- The TRU dimensions become arenas for teachers to reflect on their own teaching:
 - in planning,
 - in reflecting on how things have gone
 - in thinking about next steps.

TRU Math Conversation Guide: A Tool for Teacher Learning and Growth¹

This *TRU Math Conversation Guide* is a product of The Algebra Teaching Study (NSF Grant DRL-0909815 to PI Alan Schoenfeld, U.C. Berkeley, and NSF Grant DRL-0909851 to PI Robert Floden, Michigan State University), and of The Mathematics Assessment Project (Bill and Melinda Gates Foundation Grant OPP53342 to PIs Alan Schoenfeld, U. C Berkeley, and Hugh Burkhardt and Malcolm Swan, The University of Nottingham).

A companion document, the TRU Math Conversation Guide, Module A: Contextual Algebraic Tasks, supports in-depth explorations of algebraic thinking, with a focus on complex modeling and applications problems. Module A: Contextual Algebraic Tasks is the first of a series of content-specific conversation guides aimed at supporting classroom engagement with centrally important mathematical ideas. The TRU Math Conversation Guide Modules will all be accessible at http://ats.berkeley.edu/tools.html and/or http://map.mathshell.org/materials/index.php.

Suggested citation:

Baldinger, E., & Louie, N. *TRU Math conversation guide: A tool for teacher learning and growth*. Berkeley, CA & E. Lansing, MI: Graduate School of Education, University of California, Berkeley & College of Education, Michigan State University. Retrieved from: http://ats.berkeley.edu/tools.html and/or http://map.mathshell.org/materials/pd.php.

This material may be reproduced and distributed, without modification, for non-commercial purposes. All other rights reserved.

¹ You are reading the first public version of this conversation guide. We hope that reflecting on teaching in the ways suggested here will be productive. We also welcome comments and suggestions for improvement. Please contact Nicole (<u>NLL@berkeley.edu</u>) and Evra (<u>evra@berkeley.edu</u>) with your feedback.
1

Start with the core questions:

The Mathematics

How do mathematical ideas from this unit/course develop in this lesson/lesson sequence?

Cognitive Demand

What opportunities do students have to make their own sense of mathematical ideas?

Access to Mathematical Content

Who does and does not participate in the mathematical work of the class, and how?

Agency, Ownership, and Identity

What opportunities do students have to explain their own and respond to each other's mathematical ideas?

Formative Assessment

What do we know about each student's current mathematical thinking, and how can we build on it?

... and expand them.

• Before a lesson, you can ask:

- How can I use the five dimensions to enhance my lesson planning?
- After a lesson, you can ask:
 - How well did things go? What can I do better next time?
- Planning next Steps, you can ask:
 - How can I build on what I've learned?

Looking at the conversation guide

experienc

important and conce

TRU Math Conversation Guide:

A Tool for Teacher Learning and Growth¹

This TRU Math Conversation Guide is a product of The Algebra Teaching Study (NSF Grant DRL-0909815 to PI Alan Schoenfeld, U.C. Berkeley, and NSF Grant DRL-0909851 to PI Robert Floden, Michigan State University), and of The Mathematics Assessment Project (Bill and Melinda Gates Foundation Grant OPP53342 to PIs Alan Schoenfeld, U. C Berkeley, and Hugh Burkhardt and Malcolm Swan, The University of Nottingham).

Access to Mathematical Content

Core Question: Who does and does not participate in the mathematical work of the class, and how

All students should have access to opportunities to develop their own understandings of rich mathematics, and to build productive mathematical identities. For any number of reasons, it can be extremely difficult to provide this access to everyone, but that doesn't make it any less important! We want to challenge ourselves to recognize who has access and when. There may be mathematically rich discussions or other mathematically productive activities in the classroom—but who gets to participate in them? Who might benefit from different ways of organizing classroom activitv?

Access to Mathematical Content

Pre-observation	Reflecting After a Lesson	Planning Next Steps
What opportunities exist for each student to participate in the mathematical work of the class?	Who did and didn't participate in the mathematical work of the class, and how?	How can we create opportunities for each student to participate in the mathematical work of the class?

Think about

- o The range of ways students can and do participate in the mathematical work of the class (talking, writing, leaning in, listening hard; manipulating symbols, making diagrams, interpreting graphs, using manipulatives, connecting different strategies, etc.). Which students participate in which ways.
- o Which students are most active when, and how we can create opportunities for more students to participate more actively.
- o What opportunities various students have to make meaningful mathematical contributions.
- o Language demands and the development of students' academic language.
- o How norms (or interactions, or lesson structures, or task structure, or particular representations, etc.) facilitate or inhibit participation for particular students.
- o What teacher moves might expand students' access to meaningful participation (such as modeling ways to participate, providing opportunities for practice, holding students accountable, pointing out students' successful participation).
- How to support particular students we are concerned about (in relation to learning, issues of safety, participation, etc.).

The Mathematics

Core Question: How do mathematical ideas from this unit/course develop in this lesson/lesson sequence?

Students often experience mathematics as a set of isolated facts, procedures and concepts, to be rehearsed, memorized, and applied. Our goal is to instead give students opportunities to

Cognitive Demand

Core Question: What opportunities do students have to make their own sense of mathematical ideas lessons ar active way

We want students to engage authentically with important mathematical ideas, not simply receive networks knowledge. This requires students to engage in productive struggle. They need to be supported in

	t	nese strugg	~~~~~	that	thou aron't last but at the came t	imo cunnert cheuld maintain ctud	lonts'
P How will im ideas devel	o b t	pportunitie ut our goal o make thei		Cor	Agency, Au	thority, and Ident dents have to explain their own and re	ity spond to each other's
unit? <i>Think about</i> o The ma		Pre-	Mar are mer	ny stu "bad moriz	" udents have negative beliefs abou at math," or that math is just a b e. Our goal is to support all stude	t themselves and mathematics, fo unch of facts and formulas that th nts—especially those who have n	or example, that they rey're supposed to ot been successful with
 How may How we 	tc m	make their or athematical io	mat stuc	them dents	Fo	rmative Assessme	nt
 Which s How fut 	т 0	h <i>ink about:</i> What oppo	easy mat	y suc them	Core Question: What do we know	about each student's current mathe build on it?	matical thinking, and how can we
	 How stude How stude How the transvirging What reso are availat What reso What reso What reso What com 	How stude How the te removing s What resou are availab What resou Which stud Own and How future What com	at opp on for and r hema ak abo	We want instruction to be responsive to students' actual thinking, not just our hopes or assumptions about what they do and don't understand. It isn't always easy to know what students are thinking, much less to use this information to shape classroom activities—but we can craft tasks and ask purposeful questions that give us insights into the strategies students are using, the depth of their conceptual understanding, and so on. Our goal is to then use those insights to guide our instruction, not just to fix mistakes but to integrate students' understandings, partial though they may be, and build on them.			
			0	Who :	FC		nt
			0	Who How	Pre-observation	Reflecting After a Lesson	Planning Next Steps
			0 1	How t stude How r How r	What do we know about each student's current mathematical thinking, and how does this lesson build on it?	What did we learn in this lesson about each student's mathematical thinking? How was this thinking built on?	Based on what we learned about each student's mathematical thinking, how can we (1) learn more about it and (2) build on it?
			0	Which	Think about: • What opportunities exist for students to • What opportunities exist for students to • What different ways students get to shar board, creating diagrams, demonstrating • Who students get to share their ideas wil • How students are likely to make sense of • What things we can try (e.g., tasks, lesson especially the thinking of students whose • What we know and don't know about ho • What opportunities exist to build on stud opportunities.	develop their own strategies and approaches, share their mathematical ideas and reasoning their mathematical ideas and reasoning (wr with manipulatives, etc.). In (e.g., a partner, the whole class, the teache the mathematics in the lesson and what resp structures, questioning prompts such as tho mathematical ideas we don't know much ab we each student is making sense of the mathem ents' mathematical thinking, and how teache	, and to connect their ideas to others'. (titing on paper, speaking, writing on the r). onses might build on that thinking. se in FALS) to surface student thinking, but yet. matics we are focusing on. rs and/or other students take up these

Access to Mathematical Content

Core Question: Who does and does not participate in the mathematical work of the class, and how

All students should have access to opportunities to develop their own understandings of rich mathematics, and to build productive mathematical identities. For any number of reasons, it can be extremely difficult to provide this access to everyone, but that doesn't make it any less important! We want to challenge ourselves to recognize who has access and when. There may be mathematically rich discussions or other mathematically productive activities in the classroom—but who gets to participate in them? Who might benefit from different ways of organizing classroom activity?

Access to Mathematical Content

Pre-observation	Reflecting After a Lesson	Planning Next Steps
What opportunities exist for each student to participate in the mathematical work of the class?	Who did and didn't participate in the mathematical work of the class, and how?	How can we create opportunities for each student to participate in the mathematical work of the class?

Think about:

• The range of ways students can and do participate in the mathematical work of the class (talking, writing, leaning in, listening hard; manipulating symbols, making diagrams, interpreting graphs, using manipulatives, connecting different strategies, etc.).

- o Which students participate in which ways.
- o Which students are most active when, and how we can create opportunities for more students to participate more actively.
- $\circ~$ What opportunities various students have to make meaningful mathematical contributions.
- $\circ\;$ Language demands and the development of students' academic language.
- How norms (or interactions, or lesson structures, or task structure, or particular representations, etc.) facilitate or inhibit participation for particular students.
- What teacher moves might expand students' access to meaningful participation (such as modeling ways to participate, providing opportunities for practice, holding students accountable, pointing out students' successful participation).
- How to support particular students we are concerned about (in relation to learning, issues of safety, participation, etc.).

Tool (c) Ways to Observe Classrooms

Here are three ways of observing:

- Observe as a teacher.
- Observe, as a student.
- Observe as a researcher.

Observe as a teacher

The Mathematics	 Are students learning important mathematics? Are opportunities made for meaningful connections?
Cognitive Demand	 How long do students spend on each prompt? Do they engage in productive struggle? Do teacher questions invite explanations or answers?
Access to Mathematical Content	 Are there multiple ways to get involved productively? Does the teacher ask a range of students to respond?
Agency, Authority, and Identity	 Who explains most: the teacher or the students? Do the students give extended explanations?
	• Deac the teacher follow up on student responses?
Formative Assessment	 Does the teacher follow up on student responses? Does the teacher vary the lesson in the light of student responses?

Observe as if you were a student

The Mathematics	 What's the big mathematical idea in this lesson? How does it connect to what I already know? 		
Cognitive Demand	 How long am I given to think, and to make sense of things? What happens when I get stuck? Am I invited to explain things, or just give answers? 		
Access to Mathematical Content	 Do I get to participate in meaningful math learning? Can I hide or be ignored? 		
Agency, Authority, and Identity	Do I get to explain, to present my ideas? Are they built on? Am I recognized as being capable and able to contribute in meaningful ways?		
Formative Assessment	 Do classroom discussions include my thinking? Does instruction respond to my thinking and help me think more deeply? 		

Observe as if you were a researcher

	The Mathematics	Cognitive Demand	Access to Mathematical Content	Agency, Authority, and Identity	Formative Assessment
	How rich – conceptual, connected – is the mathematical content?	To what extent are students supported in grappling with and making sense of mathematical concepts?	To what extent does the teacher support access to the content of the lesson for all students?	To what extent are students the source of ideas and discussion of them? How are student contributions framed?	To what extent is students' mathematical thinking surfaced; to what extent does instruction build on student ideas when potentially valuable or address misunderstandings when they arise?
1	Classroom activities are unfocused or skills- oriented, lacking opportunities for engagement in key practices such as reasoning and problem solving.	Classroom activities are structured so that students mostly apply memorized procedures and/or work routine exercises.	There is differential access to or participation in the mathematical content, and no apparent efforts to address this issue.	The teacher initiates conversations. Students' speech turns are short (one sentence or less), and constrained by what the teacher says or does.	Student reasoning is not actively surfaced or pursued. Teacher actions are limited to corrective feedback or encouragement.
2	Activities are primarily skills-oriented, with cursory connections between procedures, concepts and contexts (where appropriate) and minimal attention to key practices.	Classroom activities offer possibilities of conceptual richness or problem solving challenge, but teaching interactions tend to "scaffold away" the challenges, removing opportunities for productive struggle.	There is uneven access or participation but the teacher makes some efforts to provide mathematical access to a wide range of students.	Students have a chance to explain some of their thinking, but "the student proposes, the teacher disposes": in class discussions, student ideas are not explored or built upon.	The teacher refers to student thinking, perhaps even to common mistakes, but specific students' ideas are not built on (when potentially valuable) or used to address challenges (when problematic).
3	Classroom activities support meaningful connections between procedures, concepts and contexts (where appropriate) and provide opportunities for engagement in key practices.	The teacher's hints or scaffolds support students in productive struggle in building understandings and engaging in mathematical practices.	The teacher actively supports and to some degree achieves broad and meaningful mathematical participation; OR what appear to be established participation structures result in such engagement.	Students explain their ideas and reasoning. The teacher may ascribe ownership for students' ideas in exposition, AND/OR students respond to and build on each other's ideas.	The teacher solicits student thinking and subsequent instruction responds to those ideas, by building on productive beginnings or addressing emerging misunderstandings.

Misuses of TRU

- You can use also use TRU to grade teachers ... we can't stop you.
- But the most important use of a yardstick is to measure growth.

Resources

The TRU Math Suite and supporting documents are available on

The Mathematics Assessment Project web site: http://map.mathshell.org/

Under the "TRU Math Suite" tab

Mathematics Assessment Project ASSESSING 21ST CENTURY MATH

Welcome to the Mathematics Assessment Project

Home About News Lessons Tasks Tests PD Modules TRU Math Suite Standards

Mathematics Assessment Resource Service

The Mathematics Assessment Project is part of the <u>Math Design Collaborative</u> initiated by the Bill & Melinda Gates Foundation. The project set out to design and develop well-engineered tools for formative and summative assessment that expose students' mathematical knowledge and reasoning, helping teachers guide them towards improvement and monitor progress. The tools are relevant to any curriculum that seeks to deepen students' understanding of mathematical concents and develop Where is the 'Log in' button?

All of our materials are now available from this site without logging in.

Updated Lessons

All 100 Classroom Challenges lessons have now been revised and are no longer 'beta'

Questions?

Comments?

Suggestions?

Mathematics Improvement Network

Thank you

< insert contact details >

© 2017 University of California, Berkeley May be reproduced for non-commercial purposes under the Creative Commons BY-NC-SA license detailed at https://creativecommons.org/licenses/by-nc-sa/4.0/ - all other rights reserved